Scientific Publications

11. Jimmidi, R., Chamakuri, S., Lu, S. et al. DNA-encoded chemical libraries yield non-covalent and non-peptidic SARS-CoV-2 main protease inhibitors. Communications Chemistry 6, 164 (2023). https://doi.org/10.1038/s42004-023-00961-y

10. Kim, S. H., Kearns, F. L., Rosenfeld, M. A., Votapka, L., Casalino, L., Papanikolas, M., Amaro, R. E., & Freeman, R. (2023). SARS-CoV-2 evolved variants optimize binding to cellular glycocalyx. Cell reports. Physical science4(4), 101346. https://doi.org/10.1016/j.xcrp.2023.101346

9. Moghadasi, S. A., Heilmann, E., Khalil, A., Nnabuife, C., Kearns, F., Ye, C., Moraes, S. N., Costacurta, F., Esler, M., Aihara, H., von Laer, D., Martinez-Sobrido, L., Palzkill, T., Amaro, R. E., & Harris, R. (2022). Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitorsScience Advances, 2023-03-31. https://doi.org/10.1101/2022.08.07.503099

8. Seyed Arad Moghadasi, Rayhan G. Biswas, Daniel A. Harki, Reuben S. Harris, Rapid resistance profiling of SARS-CoV-2 protease inhibitors, bioRxiv: the preprint server for biology doi: https://doi.org/10.1101/2023.02.25.530000

7. Smith E, Davis-Gardner ME, Garcia-Ordonez RD, Nguyen TT, Hull M, Chen E, Yu X, Bannister TD, Baillargeon P, Scampavia L, Griffin P, Farzan M, Spicer TP. High throughput screening for drugs that inhibit 3C-like protease in SARS-CoV-2. SLAS Discov. 2023 Apr;28(3):95-101. doi: 10.1016/j.slasd.2023.01.001. Epub 2023 Jan 14. PMID: 36646172; PMCID: PMC9839384. https://pubmed.ncbi.nlm.nih.gov/36646172/

6. Kaïn van den Elsen, Bing Liang Alvin Chew, Jun Sheng Ho, Dahai Luo, Flavivirus nonstructural proteins and replication complexes as antiviral drug targetsCurrent Opinion in Virology, Volume 59, 2023, 101305, https://doi.org/10.1016/j.coviro.2023.101305.

5. Heilmann, E., Costacurta, F., Moghadasi, S. A., Ye, C., Pavan, M., Bassani, D., Volland, A., Ascher, C., Weiss, A. K. H., Bante, D., Harris, R. S., Moro, S., Rupp, B., Martinez-Sobrido, L., & von Laer, D. (2023). SARS-CoV-2 3CLpro mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376. Science translational medicine, 15(678), eabq7360. https://doi.org/10.1126/scitranslmed.abq7360

4. Murphy, H., & Ly, H. (2022). Understanding Immune Responses to Lassa Virus Infection and to Its Candidate Vaccines. Vaccines, 10(10), 1668. https://doi.org/10.3390/vaccines10101668

3. Moeller, N. H., Passow, K. T., Harki, D. A., & Aihara, H. (2022). SARS-CoV-2 nsp14 Exoribonuclease Removes the Natural Antiviral 3'-Deoxy-3', 4'-dihydro-cytidine Nucleotide from RNA. Viruses, 14(8), 1790. https://doi.org/10.3390/v14081790

2. Kearns, F. L., Sandoval, D. R., Casalino, L., Clausen, T. M., Rosenfeld, M. A., Spliid, C. B., Amaro, R. E., & Esko, J. D. (2022). Spike-heparan sulfate interactions in SARS-CoV-2 infection. Current opinion in structural biology, 76, 102439. https://doi.org/10.1016/j.sbi.2022.102439

1. Yang, Y., & Du, L. (2022). Neutralizing antibodies and their cocktails against SARS-CoV-2 Omicron and other circulating variants. Cellular & molecular immunology, 19(8), 962–964. https://doi.org/10.1038/s41423-022-00890-1